TG-1: Portable Instrument for Transient PM Measurements S. Gupta, G. Hillman, J. Shih, R. Sekar Center for Transportation Research ARGONNE NATIONAL LABORATORY Russel R. Graze CATERPILLAR, INC. Shirish Shimpi, William T. Martin CUMMINS, INC. Del Pier SIERRA INSTRUMENTS, INC. Contract manager: Gurpreet Singh, DOE-OFCVT #### **Overview** - Current PM measurement issues - Survey of commercially available instrumentation - Laser Induced Incandescence - Instrument Development - Future efforts # Emission regulations have rendered PM emissions low as to be comparable to minimum instrument detectivity | Description | System details | MC
(mg/m³) | | |--------------------------------------|-------------------------------|---------------|------| | N. J. Khatri, John
Johnson (1978) | 1973 Caterpillar 3150,
V-8 | 27-84 | | | Dave Hoefeldt (1993) | 2 cyl Kubota
generator set | 2-25 | | | Abdul Khalek (1998) | Perkins 4-cylinder | 0.4-14 | | | (2003) | Caterpillar's recommendation | 0.1 tai | rget | ## Heavy-duty truck emissions regulated based on a transient cycle as well as steady state modes # Health effects render particle size and number emissions important Future (EU) regulations are likely to be based on particle number and size. Aggregate particle size (D) & number density (N) measurement capability desirable ## A survey of available transient PM measurement instrumentation | Instrument | Issues | Cost | | |-------------------------|---|-------------|--| | | | (Thousands) | | | Smoke
meters | Quantitative measurements not possible | ~\$100 | | | TEOM
1105 | Yields -ve measurements, vibration sensitive, and coarse resolution | \$24 | | | ELPI | Very coarse resolution | \$70 | | | DMS 500
(Cambustion) | Very expensive | \$190 | | | TG-1
(Argonne) | portable, cross-platform, real-
time and modular | \$30 | | target ## **Tapered Element Oscillating Microbalance** (TEOM) #### Tapered Element Oscillating Microbalance Measures Mass Concentration, M (g/cc) in Diesel Exhausts $$M = \frac{k_o}{f^2}$$ $$MC = \frac{1}{V} \frac{dM}{dt} = \frac{1}{V} \frac{-2k_o}{f^3} \left(\frac{df}{dt}\right)$$ \therefore f as well as $\frac{df}{dt}$ need to be measured accurately. #### **Measurement issues with TEOM** - Sensitive to typical test-cell vibration levels - Can yield negative measurements due to water vapor desorption ### Laser Induced Incandescence (LII) ### LII has many desirable characteristics Primarily measures volume fraction $$f_v \times \rho = MC \text{ (grams/cc)}$$ Minimum detectivity = $0.001 \text{ (mg/m}^3\text{)}$ Can measure in real-time Time response/ resolution $= 1e-9 \sec/ 0.1 \sec$ In combination with Rayleigh scattering yields Mean particle size (nm) $$D = K_1 \cdot \left(\frac{Q_{\nu\nu}}{MC}\right)^{\frac{1}{3}}$$ Number density (#/cc) $$N = K_2 \cdot \frac{MC}{D}$$ #### LII phenomenon Particle heating by means of a highly energetic laser pulse Detection of the enhanced thermal radiation $$\underbrace{Q_{abs} \cdot \frac{\pi d_{p}^{2}}{4} \cdot E_{s}}_{Absorption} - \underbrace{\Lambda \cdot (T - T_{0}) \cdot \pi d_{p}^{2}}_{Hest \ conduction} + \underbrace{\frac{\Delta H_{s}}{M} \cdot \frac{dm}{dt}}_{Vaporization} - \underbrace{\frac{\pi d_{p}^{2} \int \varepsilon(d_{p}, \lambda) M_{\lambda}^{h}(T, \lambda) \cdot d\lambda}_{Dermal \ rodiation} - \underbrace{\frac{\pi d_{p}^{3}}{6} \rho_{s} \cdot C_{s} \cdot \frac{dT}{dt}}_{Change \ of \ interval \ energy} = 0$$ ## Development of an LII based Instrument ## Many possible arrangements were evaluated... www.esytec.de 2001 - Sensor head design dependent on engine size - Potential operator (laser) safety hazard ### ...to reach an optimal design ### A Portable instrument was integrated Component cost: \$40 K **Size:** 24" x 15" x 8.5" Weight: Approx 40 lbs #### **Specifications** 10 Hz sampling #### **Utility requirements** 110 VAC, 13 Amps Patent pending # Performance tests on a light-duty diesel engine Mercedes Benz 1.7 L 4 cyl Low-inertia Dynamometer # Excellent performance over typical diesel engine steady-state operation ## TG-1 has better time resolution than a TEOM 1105 5 sec mvg. average 0.3 sec mvg. average ## TG-1 performs better than a TEOM 1105 for step changes in engine modes Transient measurements performed on a Mercedes Benz 1.7 L engine coupled to a low-inertia dynamometer ## TG-1 Performance Over the urban driving cycle Performance tests on a Heavy-duty diesel engine **CAT C-10** 6 cyl 10 L 1800 rpm 1460 Nm@ 1200 rpm # Validation using Sierra's BG2 dilution system \triangleright Such a setup necessitated the use of dilution ratios $\sim 4-8$ # TG-1 has excellent day-to-day repeatability #### EPA Heavy-duty Engine Dynamometer Transient Cycle #### **Tests on Cummins full-flow dilution tunnel** ## The Engine tested had to satisfy the most stringent of PM emission standards U.S. Particulate Standards (On highway) ### **Cummins' full-flow dilution setup** # Gravimetric vs. TG-1 over the transient cycle | | Total
flow
(m3) | Gravimet
ric
(mg) | TG-1
(mg) | |-------------|-----------------------|-------------------------|--------------| | Cold start | 1.1646 | 1.17 | 1.285 | | Hot start 1 | 1.1684 | 1.15 | 1.385 | | Hot start 2 | 1.16294 | 1.158 | 1.428 | | Hot start 3 | 1.16334 | 1.194 | 1.416 | - In these limited set of tests the agreement is encouraging. - Cummins desires agreement within 0.01 mg ## Ongoing Effort: Develop capability to measure Particle number density and aggregate size ## Validation of particle size to be performed using TEM morphology studies - Stretched chain-like particles - 17,000 magnification K. O. Lee, Poster session ## Such studies yield very accurate particle size information Primary particle size Aggregate particle size ## TG-1 may help develop control strategies to lower the No_x – soot tradeoff